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Are the odd-rank crystal field parameters independent quantities?
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Abstract

The relation between various odd-rank crystal field parameters is discussed in the context of the theoretical description of the
spectroscopic properties of rare earth ions in crystals.  1998 Elsevier Science S.A.
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kThe structural factors B are called the crystal fieldThe intensity of electric dipole one photon transitions q
N parameters, and they describe the environment of the rarebetween the energy levels of the 4f configuration of rare

earth ion, including its symmetry. In practice, the crystalearth ions in crystals is traditionally analyzed by means of
field parameters are usually determined from a fittingJudd Ofelt theory [1,2]. In this theory the transition
procedure applied for the reproduction of the observedamplitude is determined by second order terms which
energies. Indeed, all attempts made to calculate theminclude the perturbing influence of excited configurations
directly have failed since the model of the most importanttaken into account via the odd part of the crystal field
physical interactions which have to be taken into accountpotential. In terms of effective operators the line strength
for a proper description is not as yet well defined [3,4]. Inof the one photon electric dipole transition is defined by

kthis sense, as the name ‘‘parameters’’ implies, B in Eq.the expression q

(12) represent the numbers which are determined from a
N ( l) N 2 fitting procedure. This means that the definition of theS 5OV uk4f C uU u4f C lu (1)f→i l f i

l crystal field potential here is general, and it goes beyond
the stereotype of the traditional interpretation based on the

where V are the so-called Judd Ofelt parameters whichl point charge approximation of the electrostatic model.
are usually determined through a fitting procedure. It is

In general, the summation in Eq. (2) includes the terms
also possible, however, to evaluate them directly. The

up to infinity. However, in practice the triangular con-
angular factors contributing to V evaluated once might be

ditions for the non-vanishing matrix elements of spherical
used for any ion of the lanthanide series, since they are

tensors limit the expansion to the terms with rank not
independent of the electronic structure of the investigated

greater than 6 for the rare earth ions. In addition, only the
system. It is also easy to evaluate the radial integrals, and

even-rank terms contribute to the energy, while the odd-
when the perturbed function approach is applied they are

rank terms contribute to the intensity of electric dipole f↔f
evaluated for the complete radial basis sets of one electron

transitions. This means that the even-rank crystal parame-
states of a given symmetry. There is a problem, however,

ters might be determined through the reproduction of the
with the crystal field parameters with odd ranks which Nmeasured energy of the levels of the 4f configuration.
when squared contribute to V.

Actually, the measured energies of the states of a system
In terms of tensor operators the crystal field potential is

which contain a rare earth ion in a crystal, E , i 5idefined as a one particle operator
1,2, . . . ,l, are, in general, expressed by linear combinations

k k (k) of unknown even-rank crystal field parametersV 5OB Or C (u f ) (2)CF q i q i i
kq i
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where the coefficients are evaluated with approximate latter is obviously represented by a non-local operator.
functions and within a certain approximation; some of Using the solutions of h0

them vanish due to the symmetry of the states taken into
h C 5 E C , k 5 1,2, . . .0 k k kaccount. In this sense the values of even-rank crystal field

parameters are related to each other. It should be realized the above relation is written in terms of matrix elements in
that Eq. (3) demonstrates a linear combination of appro- the following way:
priate structural parameters, and this is not a linear

(E 2 E )kC uruC l 5 kC u=uC l 1 kC u[r,V(r,r9)]uC l (5)i f f i f i f icombination of various terms of the multipole expansion.
Indeed, at the point of applying the fitting procedure there The left-hand side of Eq. (5) determines the transition

kis no other interpretation of B other than the fact thatq amplitude defined with the length form of the electric
these are the structural parameters. The values of crystal dipole radiation operator. This is the amplitude of a
field parameters obtained from the fitting procedure in- transition which originates from the state C and terminatesi

Nvolve the impact due to all physical interactions which in the state C of the 4f configuration. The first elementf
might be represented by one particle operators (see, for on the right-hand side of the equality represents the
example, the papers of Newman where the necessity of the transition amplitude which is defined with the velocity
two particle parametrization scheme is introduced). The form of the radiation operator. The last term on the
fitting procedure applied for finding the crystal field right-hand side of Eq. (5) is caused by the non-local
parameters of even rank is very illustratively described in character of the potential. Note that this additional matrix

¨ ¨the PhD Thesis of Holsa [5], where the adjusted values are element vanishes if the potential is local, and consequently
compared to those evaluated directly within the point there is an equivalence of the length and velocity formulas
charge model. of the electric dipole radiation operator. It should be

The situation is much more complicated in the case of mentioned that the equality between the length and ve-
the odd-rank crystal field parameters which do not contrib- locity forms of the transition amplitude is very often used
ute to the energy. Indeed, these parameters, the knowledge as a criterion of the quality of the wavefunctions used for
of which is crucial for the evaluation of the transition the analysis. It is seen from Eq. (5), however, that it is
intensities, cannot be determined in a semi-empirical way. possible to analyze the quality of the functions only if the

The main aim of the present discussion is to derive a additional term is included, otherwise any discrepancy
relationship between various crystal field parameters of between both forms of the radiation operator determines
odd rank. At the same time it is believed that the present the measure of the non-locality of the potential which is
discussion helps to cover an existing gap in theoretical present in the hamiltonian.

¨ ¨analysis as noted in, and used here as an example, Holsa’s The equivalence in Eq. (5) plays a crucial role in the
thesis written in 1983. present discussion. It should be realized, however, that

Indeed, his results of direct calculations of even-rank within the free ionic system approximation and the single
parameters are compared to values obtained from the configuration approximation applied for the description of
fitting procedure. Unfortunately, the odd-rank parameters the electronic structure of rare earth ion crystals the matrix
evaluated directly could not be compared 15 years ago and elements in Eq. (5) vanish due to the parity requirements.
still cannot be compared to the so-called ‘‘experimental’’ Therefore, the spectroscopic properties of these systems
values since the latter are unknown as there is no fitting are described within the perturbation theory applied, in the
procedure for this case established. simplest approach, for the following hamiltonian:

The standard Judd Ofelt theory and all the third order
oddH 5 h 1 lV (6)models discussed in the literature are based on the length 0 CF

form of the electric dipole radiation operator, which in where the perturbation is defined in the following way:
terms of tensor operators, has the form

odd odd oddV ; QV P 1 PV Q (7)(1) (1) CF CF CFD 5Or C (u f ) (4)· i · i i
i and P is the projection operator onto the space spanned by

the solutions of h , and Q is its orthogonal complement.For many electron systems the momentum operator is no 0

Due to the definition of the perturbation operator in Eq.longer equivalent to the velocity operator when its hamilto-
N(7), the zeroth order energy of the states of the 4fnian contains the non-local potential such as, for example,

configuration is not changed when the hamiltonian H isin the case of the standard Hartree–Fock method [6].
introduced. At the same time, the wavefunctions areIndeed,
improved by new components which represent the perturb-

i" ing influence of the crystal field potential. In general, each][r,h ] 5 p 1 [r,V(rr9)]0 m wavefunction is expressed by a power series in l, namely

m (m)where h is the hamiltonian of Hartree–Fock model and V0 C 5Ol C (8)
mis its potential which includes the exchange potential; the
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where the distinct corrections to the wavefunctions have to elements between one electron states, the angular momenta
satisfy the appropriate equations. Consequently, each of which differ from each other by one.
function involved in the matrix elements of the equival- In terms of effective operators and within the approxi-
ence in Eq. (5) has to be expanded in accordance with Eq. mations of the standard Judd Ofelt theory, the equality in
(8) Eq. (8) has the following form [7]:

odd even
m (m) n (n) t 1 kt q k(E 2 E ) Ol C uruOl C OOOB (21) S DA (l9)K Li f f i p tp r 2 qm n tp kq l 9

dm (m) n (n) 1 / 2 t5 Ol C u=uOl CK L U U]2e [k] 4f · (4f → l9)f i K LF km n dr

m (m) n (n) 1 t 1 / 21 Ol C u[r,V(r,r9)]uOl C (9)K L U U]f i 1 a(l9) 4f · (4f → l9) 2 (2e [k] (E 2 E )K L k f im n r

The equality in Eq. (9) is exact since the exact expansion t N (k) N* G1 e a)k4furu· (4f → l9)l k4f C uU (4f,4f)u4f C l 5 0k f iof the wavefunctions has been applied. Following the
standard procedure of the perturbation theory it is straight- (13)
forward to conclude that the terms associated with the

*where the factors e and e select even and odd values ofk ksame power of the perturbing parameter on both sides of
k, respectivelyEq. (9) have to be equal. In particular, it is possible to

k k1 1extract from all terms contributing to the matrix elements ] * ]e 5 (1 1 (21) ), e 5 (1 2 (21) )k k2 2
in Eq. (9) those for which n 1 m 5 1. This means that for

The angular term in Eq. (13) is the same as in the standardthis particular case the wavefunctions in the matrix ele-
Judd Ofelt theoryments of Eq. (9) are the first order corrections, and in

¨terms of the Rayleigh–Schrodinger perturbation theory t k 1k 1 / 2 (1) (t )A (l9) 5 [k] H JkfuuC uul9lkl9uuC uufl (14)tthey have the following form: f l9 f

andkXxuV uC lCF k0 ]]]]C 5C 1O uXxl (10)k k 0 (1)E 2 E *Xx kfuu= uul9lk Xx
]]]]a(l9) 5 (15)(1)kfuuC uul9lwhere uXxl denotes the states x of the intermediate, excited

configurations X which are of the opposite parity to the s (s) 2 0a 5 O R (4f,4f,4f,4f)kfuuC uufl 2 R (4f,4f,4f,4f) (16)Nparity of the states of the 4f configuration. As a result, the s52,4,6

left-hand side of Eq. (9) represents the transition amplitude
The radial integrals of Eq. (13) are expressed in terms ofdefined within the standard Judd Ofelt theory. The remain-
the perturbed functions of the Judd Ofelt approach, anding matrix elements of Eq. (9) are also evaluated with the
they are defined as follows:wavefunctions of the Judd Ofelt approach. It should be

texcmentioned that a similar analysis might be performed with k4fur un9l9lt ]]]· (4f → l9) 5O P (r) (17)n9l 9the functions which describe the perturbing influence of D(4f,n9l9)n9
some other physical mechanisms such as, for example,

The perturbed functions contain the perturbing influence ofelectron correlation or spin orbit interaction. In such a
single excitations from the 4f shell to all excited onecase, however, the analysis has to be based on the double
electron states of l9 symmetry, and they are the solutions ofperturbation approach. Furthermore, in order to include all
appropriate differential equations [8].possible third order terms contributing to the transition

Eq. (13) has the form of a linear combination of termsamplitude, the wavefunctions have to be limited up to
associated with various crystal field parameters with oddsecond order in both perturbations simultaneously. For the
ranks. It is interesting to note that this relation is satisfiedsake of clarity, the present discussion of the analysis is
for a distinct electric dipole transition, since the coeffi-limited to its simplest version which is based on the first

tcients of B for k even depend directly on the energy oforder corrections to the wavefunctions. p

the particular transition. This dependence is reinforced byThe matrix elements of Eq. (9) contain the tensor
the matrix elements of unit tensor operators with theoperators
functions which describe the states involved in the radia-

(1)r ⇒ rC (11) tive process. Thus, for the transition j described by C ←Cf i

Eq. (13) has the general form
d 1(1) (1) (1)] ] *= ⇒ C 1 = (12) t t t1 2 rdr r b B 1 b B 1 ? ? ? 1 b B 5 0 for j 5 1,2, . . . ,l,j1 p j2 p jr p1 2 r

*where = is defined by its off-diagonal reduced matrix and r # l (18)
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